Math 115
Summer 2017
Lecture 9

$$
A(-5,2), B(7,4)
$$

(1) Draw $\overline{A B}$
(2) Sind

(3) Find

$$
m \longrightarrow m=\frac{2-4}{-5-7}=\frac{-2}{-12}=\frac{1}{6}
$$

(4) find d

$$
\begin{aligned}
& d=\sqrt{(-5-7)^{2}+(2-4)^{2}} \\
& =\sqrt{(-12)^{2}+(-2)^{2}}=\sqrt{148} \\
& \approx 12.1
\end{aligned}
$$

$$
A\left(-3,59, \quad B\left(0, \frac{1}{4}\right) \notin Y\right. \text {-Int }
$$

(1) find $M\left(\frac{-3+0}{2}, \frac{5+1}{2}\right)$
(4) find eqn of the line $\overrightarrow{A B}$.
(2) find $m=\frac{1-5}{0-(-3)}=\frac{-4}{3}$

$$
y=m x+b
$$

(3) find $d=\sqrt{(-3-0)^{2}+(5-1)^{2}}$
(5) Draw, Show rise

$$
\begin{gathered}
=\sqrt{25} \\
=5
\end{gathered}
$$

$\Rightarrow \sum_{1}$ run of Slope.

Graph using the intercept method:

$$
\begin{array}{c|ccc}
2 x-7 y=-14 \\
0 & 2
\end{array}
$$

Graph using slope-Int form.

$$
2 x-3 y=9 \quad y=m x+b
$$

standard form $m=\frac{2}{3}$

$$
\begin{aligned}
-3 y & =-2 x+9 \quad \text { y-Int }(0,-3) \\
y & =\frac{2}{3} x-3
\end{aligned}
$$

Graph using slope-Int. form

$$
\begin{array}{ll}
3 x+5 y=10 . & \\
5 y=-3 x+10 & m=\frac{-3}{5} \\
y=\frac{-3}{5} x+2 & Y-\operatorname{Int} \\
& (0,2)
\end{array}
$$

Graph using Point-slope form.

$$
y+2=\frac{3}{5}(x-4)
$$

Point (4,-2)
slope $\frac{3}{5}$

$$
\begin{array}{ccc}
y-y_{1}=m\left(x-x_{1}\right) \\
\text { Inc. }, m>0 \\
\hdashline
\end{array}
$$

Graph using Point-slope. $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
y-3=\frac{-3}{7}(x+4)
$$

write the eqn in slope-Int. form.

$$
\text { Point }(-4,3)
$$

$$
\begin{aligned}
& y-3=\frac{-3}{7}(x+4) \\
& L C D=7 \\
& 7 y-21=-3(x+4) \\
& 7 y-21=-3 x-12
\end{aligned} \begin{cases}7 y=-3 x-12+21 \\
\text { Isolate } Y \\
y=-\frac{-3}{7} x+\frac{9}{7} & \begin{array}{l}
m=\frac{-3}{7}
\end{array} \\
y=\frac{-3}{7} \\
\text { Int }\left(0, \frac{9}{7}\right)\end{cases}
$$

Coraph $\dot{\varepsilon}$ Shade:

$$
\left\{\begin{array}{l}
x>-4 \\
y \geq \frac{2}{3} x-2
\end{array}\right.
$$

Graph \&. shade Hint: change and line to

$$
\begin{aligned}
& \left\{\begin{array}{l}
y \leq 3 \\
2 x-3 y<6 \\
y>\frac{-3}{4} x-2
\end{array}\right. \\
& 2 x-3 y<6
\end{aligned} \begin{aligned}
& -3 y<-2 x+6 \\
& \frac{-3}{-3} y>\frac{-2}{-3} x+\frac{6}{-3}
\end{aligned}
$$ slope-Int. form.

y) $\frac{2}{3} x-2$

find the equation of a line that contains $(-4,1)$ with slope 2. $\quad y-y_{1}=m\left(x-x_{1}\right)$
Graph, show rise $\dot{\text { g run. }} \quad y-1=2(x-4)$ mark important points $y=2 x+9$ on the graph.

find eau of a line that contains $(-3,-5)$ and $(0,2)$. Ans in slope-Int form. Graph, show rise! run.

$$
\begin{aligned}
& \text { run. } \\
& m=\frac{-5-2}{-3-0}=\frac{-7}{-3}=\frac{7}{3} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{7}{3}(x-0)
\end{aligned}
$$

$$
\Gamma y=\frac{7}{3} x+2
$$

find eqn of a line that contains $(2,-3)$ and is parallel to the line $2 x-3 y=-6$.
Ans in slope-Int form.
Graph both lines.

$$
\begin{aligned}
& (2,-3), m=\frac{2}{3} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+3=\frac{2}{3}(x-2) \\
& 3 y+9=2(x-2) \\
& 3 y+9=2 x-4
\end{aligned} \quad \begin{aligned}
& y=\frac{2}{3} x-\frac{13}{3}
\end{aligned}
$$

find eau of a line that contains $(-4,-3)$ and is perpendicular to the line $5 x+2 y=10$. Graph both lines.
Ans. in slope-Int form.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{2}{5}(x--4) \\
y+3=\frac{2}{5}(x+4) \\
L C D=5 \\
5 y+15=2(x+4)
\end{gathered}
$$

$$
\nabla 5 y+15=2 x+8 \quad \frac{2}{5} \cdot \frac{-5}{2}=\frac{-10}{10}=-1
$$

$$
5 y=2 x-7
$$

Find eqn of a line that contains $(5,-2)$ and

1) Zero slope
2) No slope
H.L. $y=-2$

$$
\text { V.L. } x=5
$$

3) undefined slope
4) Slope $\frac{2}{5}$.

$$
\begin{array}{ll}
\text { V.L. } x=5 & y-y_{1}=m\left(x-x_{1}\right) \\
y--2=\frac{2}{5}(x-5) \\
y=\frac{2}{5} x-4 & \begin{array}{l}
y+2=\frac{2}{5}(x-5) \\
y+2=\frac{2}{5} x-2
\end{array}
\end{array}
$$

find eqn of a line that contains $(-4,3)$ and

1) $(5,3) \quad y=3$

$$
m=\frac{3-3}{5-(-4)}=0
$$

3) $(0,0)^{b}$

$$
m=\frac{3-0}{-4-0}=\frac{-3}{4}
$$

2) $(-4,-7)$

$$
m=\frac{-7-3}{-4-(-4)}=\phi
$$

4) Parallel to $y=2 x-4$

$$
\begin{aligned}
& y-3=2(x-4) \\
& y=2 x+11
\end{aligned}
$$

5) Perpendicular to

$$
y=-\frac{2}{3} x+1
$$

$$
\begin{aligned}
y-3 & =\frac{3}{2}(x+4) \\
y-3 & =\frac{3}{2} x+6
\end{aligned} y=\frac{3}{2} x+9
$$

Graph $\dot{\varepsilon}$ shade

$$
\left\{\begin{array}{l}
y \leq \frac{-3}{4} x+5 \\
y>\frac{2}{3} x-2 \\
x \geq 0 \\
y \geq 0
\end{array}\right\} Q I
$$

Graph \& shade the Solution

$$
\left\{\begin{array}{l}
y>\frac{3}{4} x+2 \\
y \leq \frac{3}{4} x-2
\end{array}\right.
$$

No Common shaded region.

Ch. 8
Is $(-2,-4)$ a solution of $\left\{\begin{array}{l}2 x-3 y=8 \\ x-2 y=6\end{array}\right.$?
checking $2 x-3 y=8:$ checking $x-2 y=6$:

$$
\begin{gathered}
2(-2)-3(-4)=8 \\
-4+12=8 \\
8=8 \checkmark
\end{gathered}\left\{\begin{array}{c}
-2-2(-4)=6 \\
-2+8=6 \\
6=6 \checkmark
\end{array}\right.
$$

Yes, $(-2,-4)$ is a Solution.

Solve by Graphing method

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
& y=3 x-4 \\
& x-y=-2
\end{aligned}\right. \\
\text { check } 5=3(3)-4 \\
5=9-4 \\
5
\end{array}\right)=5 .
$$

Solve by subs.

$$
\left\{\begin{array}{rr}
5 y-7 x=18 & \Rightarrow 5(2 x+3)-7 x=18 \\
y=2 x+3 & 10 x+15-7 x=18 \\
y=2(1)+3 & 3 x=18-15 \\
y=5 & 3 x=3 \quad x=1
\end{array}\right.
$$

Solve by addition/elimination method:

$$
\begin{gathered}
-5\left\{\begin{array}{l}
x+4 y=14 \\
5 x+3 y=2
\end{array} \Rightarrow \begin{array}{l}
-5 x-20 y=-70 \\
5 x+3 y=2
\end{array}\right. \\
x+4(4)=14 \\
x=-2 \\
y=4
\end{gathered}
$$

The sum of two numbers is 7, their difference is 3 . Use system of linear eqns in two variables to find them.

$$
\begin{aligned}
&\left\{\begin{aligned}
x+y & =7 \\
x-y & =3
\end{aligned}\right. \\
& 2 x \quad=10 \\
& x=5
\end{aligned}
$$

$$
\begin{aligned}
5+y & =7 \\
y & =2
\end{aligned}
$$

the two numbers are 5 غ. 2 .

Perimeter of a rectangular garden is 36 m . the length is 3 m longer than twice its width. Use system of linear equs in two variables to find its dimensions.

A first number plus twice a second number is 8 .
Twice the first number plus the second number totals 25 .
find both numbers. $S \rightarrow$ Second $\#\left\{\begin{array}{l}F+2 S=8 \\ 2 F+S=25\end{array}\right.$

$$
\begin{aligned}
& -2\left\{\begin{array} { l }
{ F + 2 S = 8 } \\
{ 2 F + S = 2 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-2 F-4 S=-16 \\
F+2(-3)=8 \\
F=14
\end{array} \frac{(3 S=9}{-35} \begin{array}{l}
14 \dot{\varepsilon}-3
\end{array}\right.\right.
\end{aligned}
$$

John purchased 40 stamps. He paid $\$ 14.85$. Stamps were of two kinds, $24 \ddagger$ stamps and $39 \$$ stamps. use system of linear equs in two variables to find \geqslant of each stamps purchased. $x \rightarrow \#$ of $24 \$$ Stamps

$$
\left\{\begin{array} { l }
{ x + y = 4 0 } \\
{ 1 0 0 (2 4 x + . 3 9 y = 1 4 . 8 5 }
\end{array} \quad \left\{\begin{array}{l}
x+y=40 \\
24 x+39 y=1485
\end{array}\right.\right.
$$

$$
\frac{\left\{\begin{array}{l}
-24\left[\begin{array}{l}
x+y=40 \\
24 x+39 y=1485
\end{array}\right. \\
\left\{\begin{array}{l}
35 \text { stamps @ 39 \& each } \\
24 x+39 y=1485
\end{array}\right. \\
\begin{array}{l}
15 y=525 \\
y
\end{array} \\
y=35
\end{array}\right.}{\begin{array}{l}
-24 x-24 y=-960 \\
2
\end{array}}
$$

< 5 stamps @ 24 9 each

In his first NBA game, Lonzo Ball had 20 pts, no Free throws, he made 9 shots. How many 3 -pars did he make?
$x \rightarrow \#$ of 2 -ptrs $\Rightarrow\left\{\begin{array}{l}x+y=9 \\ y \rightarrow \# \text { of 3-ptrs }\end{array} \Rightarrow\left\{\begin{array}{l}2 x+3 y=20\end{array}, ~=~\right.\right.$

$$
\begin{aligned}
& -2 x-2 y=-18 \\
& 2 x+3 y=20
\end{aligned}\left\{\begin{array}{l}
\text { He made } \\
2 \text { e } 3 \text {-ptrs. }
\end{array}\right\}
$$

John served 40 drinks in his shift.
Small drink $\Rightarrow \$ 4$, Large drink $\Rightarrow \$ 6$ He collected \$206 in total.
How many small drinks did the Serve?

$$
\begin{aligned}
& S \rightarrow S_{\text {mall }}, L \rightarrow \text { Large } \quad-6\left\{\begin{array}{l}
S+L=40 \\
4 S+6 L=206
\end{array}\right. \\
& \left\{\begin{array}{l}
-6 S-6 L=-240 \\
\frac{4 S+6 L}{}=206 \\
-2 S
\end{array} \rightarrow S=17\right.
\end{aligned}
$$

Two angles are Complementary.
One of them is 10° more than three times the other one.
find both angles using
System of linear ears $\left\{\begin{array}{l}x+y=90 \\ x=3 y+10\end{array}\right.$ System of linear ecus in two variables.

$$
\begin{gathered}
3 y+10+y=90 \\
4 y=80 \\
y=20 \\
x=70
\end{gathered}
$$

Two angles are supplementary.
One of them is 20° less than 4 times the other one. find both angles.

$$
\left\{\begin{array}{l}
x+y=180 \\
y=4 x-20
\end{array}\right.
$$

You must use system of linear equations in two

$$
5 x=200
$$ Variables to get any credit.

$$
x+4 x-20=180
$$

$$
x=40
$$

40° غ 140°

Class QZ
(1) Solve by graphing: $\left\{\begin{array}{l}x+y=3 \\ x-y=-1\end{array}\right.$
(2) Solve by Sub.: $\left\{\begin{array}{l}x+y=6 \\ y=-x-4\end{array}\right.$
(3) Solve by addition/elimination: $\begin{cases}6 x-3 y=-15 \\ 4 x-2 y=-10\end{cases}$

